AN OPTIMAL CONTROL PROBLEM IN ULTRACENTRIFUGATION

BY JM. DARVES-BORNOZ, PL. LIONS
AND G. MOTET

Abstract

We consider the question of optimizing the
separative power of a centrifuge and we treat
it as an optimal control problem.

We first explain how this problem may be
embedded in the framework of optimal Control
Theory. The state of the distributed system is
given by the linearized system of eguations of
motion, the cost function is a functional ex-
pressing the separative power of the centrifuge
and we take boundary controls representing the
temperature field imposed on the boundary of
the centrifuge.

Then, applying some variants of classical
gradient and conjugate gradient methods, we
obtain numerical values for the optimal control,
that is for the temperature field maximizing
the separative power of the centrifuge (we also
present various verifications of these results).
These numerical results seem to indicate some
interesting and unexpected phenomena concerning
the gas flow in the centrifuge.
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Introduction

The separative performance of a gas centrifuge used
for uranium enrichment [1] depends strongly on the gas
flow field inside the device. This flow is generally
activated by boundary conditions of two types:

1 - Temperature distribution on the solid boundary,

i.e the two end plates and the side wall, as-
sumed to be perfectly conducting. This yields
the '"thermal drive".

2 - Angular momentum sink distribution near one end
plate, simulating quite roughly a scoop which
generates the "friction'drive®".

-. The problem to be solved is: how to select the bound-
ary conditions to get the highest separative per-
formance of a centrifuge?

-. A simplified approach of this question has been de-
velopped in [2]. The present paper proceeds to an
extension of that previous work by embedding the prob-
lem in the framework of the general theory of OPTIMAL
CONTROL [3].

In Sec I we recall first a few basic notions of the
theory of optimal control of distributed parameter sys-
tems and we then explain how we can apply these notions
to the problem of ultracentrifugation considered here.
The state of the distributed system is governed by the
linearized system of hydrodynamic equations. The cost
function is a functional expressing the separative pow-
er of the centrifuge. The control is of the type '"bound-
ary control" and represents the temperature distribu-
tion on the solid boundaries. We restrict the analysis
to the thermal drive because it was pointed out
by many authors (see for instance [4] that the friction
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drive, simulated by angular momentum sink at one end
plate, is approximately the same as an end cap thermal
drive.

In Sec II we deal with the numerical method built
up to solve this particular optimal control problem. The
method is in fact a variant of classical gradient and
conjugate gradient methods. The solution requires the
use of the CENTAURE code [5].

Finally in Sec III we present the numerical results
of a sample computation carried out for one centrifuge
choosen to illustrate the method and we discuss the re-
sults.

1. Mathematical Description of the Problem

I. 1. Some basic notions of optimal control of distrib-

uted parameters systems

We describe briefly the general framework of optimal
control of distributed parameter systems and we will
consider the case of boundary controls.

We consider a system which state y is defined by the

equation:

¥, =0
(1) g =
i

where ;t denotes a linear partial differential operator
defined on a functional Hilbert space X (space of functions
defined on a bounded open set O of RN) and where 53
denotes a '"boundary operator' that is a linear operator
from X into a Hilbert space Y consisting of functions
defined on 32 (the boundary of ©). Finally v is an ar-
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bitrary element of y and will be the control.

We assume that the problem (1) is well-posed ethat
is for each vegy, there exists a unique solution YE X:
of course y depends linearly of v and we will sometimes
write y=y(v). Without loss of generality, we may assume that
we have certain constraints on v: we require v to be
in a set Ilad and we assume:

(2) U is a closed, convex set of Y.
ad

Let J be a Cl functional over X, we define for each
vel(ad a cost function J (v) by

(3) I(v) =Ty |

The optimal control problem is to minimize J over
/. and to find the optimal control v* that is to find
v¥ satisfying

(4) J(v*) = inf J(v), “'*'Euad
v e‘Mad

In the application we have in mind J is not convex and
a typical assumption which insures the existence of v*
satisfying (4) is that U _, is bounded and that J is
weakly lower-semi-continuous - for more details the
reader is referred to J.L. LIONS [3], D.L. RUSSEL [6]
and to [7].

Now, to compute such a v*, a simple (and robust)
algorithm is the so-called projected gradient method:

let vﬁg@(ad we define recursively (pB, vn)GJRZQd
as follows:



(5) o™ minimizes: J(v"-p"J (v"))=infZI(v" LI (v"))
, ]

(6)  n+l _ 4 (vl = o0gr(v™y]
y

uad

where Pu denotes the usual euclidean projection in

ad
u%d.

Let us make the following trivial observation
(which will be used in the following} if for all n=0,
the above algorithm generates a sequence v? such that
vi-p"J'(v?") €U for all nZ0 then obviously (6)

reduces to

(6') Vn+1 n Vl'l _ pn J'(Vﬂ)

which is of course the usual gradient method.

Finally let us mention that many variants of the
above algorithms exist (and we will use one of these) -
see for example POLAK [8] and J. CEA [9], and we refer

to [9] for various results concerning the convergence of

the above algorithms.

1.2. Description of a problem of ultracentrifugation

We will follow the approach and model of
SOUBBARAMAYER [1], [2], [5]. Our problem takes place in
a cylinder (the centrifuge) in R2:0=(0, H)x(0O, 1),
where H denotes the scaled height of the cylinder (height
over radius) and £ is the radial coordinate lying in
(0, 1),

The state of the system is given by the set of
hydrodynamic equations linearized around the equilibrium

< ~ I .
flow (see for more details [1]): y = (u, v, Q, 5 G 2

given by the following equations in 5
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(ER) {(a Ez)u +3 T div ql= - 2v + T + QF'EE ing
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[(J;) En = - L, bEU inQ
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divg+ 2 A2¢0 =0 in 0 5

where (i, Vv, ) corresponds to the velocity field, P to the
-~

pressure and T to the temperature, and where we used the

following notations:

.9 19 . 33

G Rmr T T Y

] 1 & 2 oW

d == .5 W

v =g Tel) ¢ 20

Before presenting the boundary values (where the control
will come in), let us mention that £ is the Ekman number

at the periphery and that E_, and b are given by

R

Ep = exp [- A2(1 - £2)]

b= (y - 1) Pr A2

»

where y and Pr are two dimensionless numbers depending
only on the gas used and where A is a dimensionless con-
stant depending on the gas used, the average temperature
and the peripheral speed of the cylinder.

We now explain briefly what are the boundary condi-
tions:

itE=0,0=9=20,<C=2=0,
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' A
ifn=0,A=W=0,%=12(), T =v(8),
"
it n=H, G=%=w=0,7T=vy(e),
if g= 1, 0 = V=== 0, T = Vz(n).

where @1 is some prescribed function of £ . Finally we
define the control v as the collection of vl(z), vz(n),

vs(ﬁ) or more simple as a function on a0 Q =

{(5-0).56[0o1]}u {(1:N)sn3[09H]}U{(E’H)1£E[0a1]}

and we have T = v on 5% .

Finally let us mention that this model is valid as
long as we have

(9) max g |V|§ 6,
BOQ

and §. is some given constant, so U . = (v, max |v|gsal
0 ad 5.0 0"
0

As we do not want to enter unuseful technicalities,
we will not make precise in which functional spaces the
boundary value problem (7) - (8) is well-posed and in
which space we require the control to belong.

Ve now define the cost function: followingf2], we
introduce a few notations, we define the stream function

¥(n,§) =/ Ep ¥ g'de!

and we introduce the following functions:

-1.1

Jy(n) =28, ¢ "y ¥ Edg,

o e =1 1hiae
Jpln) = 28, €77 /o ¥° &

e LM i
g 1+J2(ﬂ')
0 1+J,(n")

dn',

G(n)

n

s

dn',

where Sc’ ¢p’ ¢w’ Nps 50 are some given constants (inde-
pendent of the state of the system).

The separative power, that we wish to maximize is
given by the following formula (see [1]):

6L = Fx{-8 Logag+Log (1+(a_-1)8)},
where ag is given by

exp {G(np)H{l+g, f;Fex1+-g;?:) 2

exp [-F(Hlkﬁp JEF Ezfijzfﬂ%l dn
+ n
2

o =
8

and F and & are prescribed constant.

We have thus define a cost function for each state

i(y) = -6u
and we want to minimize

inf {J(v) = J(y(v))},
V€94
where % . ={v, max ]v|560] .

609
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Numerical Method

1. - Approximation space.
Let us define xh
tions on the boundary 30; we search for vgth. We assume

the piecewise linear, continuous func-

(xi)!;=1 is a partition of 8q, and (vi)lg=1 are N functions
of Xh defined by: vi(xj) = 0 where j # i
and vi(xi) =5,

I

TI 1 Wi |/|'"‘\,’101 1 3

g —— ! Ny et
Ballom end Redor wall Top an Cop
cop
Therefore the search for ve Xh is equivalent to the

search for (X ) luIRN such that v =1¥;Vi' Then, the

approximate problem is to find (A )N eﬂ{ satisfying:

N *
J(ii1 kivi) = inf J(Zkivi)
N N
( J‘i )i=1(’: R
N
ve 1 av,eld
i=1 s il 8 ad
N
Remark: v D) trua is equivalent to max |i;|€dg
: B b, d
4 1—1 i=1,N

N o
j=1 We write J((A1)1=1 &

Notation: for a fixed base (vy)

X n A € . »
I?il AjVi), Let 3:(Ai)i=lt'ﬂ and W VJ((A ) to find
' minimising J(?. p®), we use the "dichotomic method
Lth parabolic fit'".
t us fix p>0,

e

1] Compute J, = J(V- %*W), Jdy =

4 J(v 2*W),

dy = J(F-p, W)

2] I J45J2<J1, do p=p/2 and go to 1]

3] 1f J4>J2>J1, do p=2%p and go to 1]
4] I1f J45J2>J1 do p=p/2 and go to 1]

5] 1f J,3J,¢J,, o is the

minimum of the parabola which passes through the points
(0,4; J4)i (Dizl jz)) (Dle) 3

Then (X, ) v approaches the minimum of

R O
the funection J on the line descending from (x )i 1 in the

descent direction - W After computing W V’J((A )

and returning to the initial state 1]...and so on.

Remarks: 1. This research can be long and require the
computation of J(; - p;) for many points
p>0. Thus it is not possible use the code
"Centaure" directly.

2. It is very important to choice a good initial
p>0, not too large or too small.
2.1 = W = - vJ((xi)i_ ) will not, most
likely, be in the direction of steepest

descent [on the drawing —Wz is better).

X- =( -h:.s A: )

166



2. - An application of the gradient method on the problem

of ultracentrifugation.

a] Let us assume that vy is an element of a base

(vl)l_ of Xh, [ui, Vis wi] the associated ve-

locity field, solution of the state of the system
[715 v5(E,n) = SEER(EMIW (E',n)E dn and Jy(1)(n)

= 2Sc£ -1 3 vy (£,n)EdE; then the application
N
vi——? J1(i) is linear; thus, if v= [ A.v
s il |
N i=1
then J1 (n)= ¢ ., J1(i)(n) [relation 1].
v int 2
Let us define J2(i,j)(n) = 2S 2f1 ( ) ag
Jﬂ- E '&'\Ujﬁn—é-
N
Thus J2_(n) = & J (i,j)(n) [relation 2].
% i,3=1 i

The relations 1 and2show that, given the func-
tions J1(i) i=1,N and J2(i,j) i=1,N J=1,N, we
easly allow the computation of J1 and sz for

= c. N
v Aivi’ where tzi)1=1 R".

i

e 2

1

N =y »
b] Assume (). )1 et €R" and W = VJ((li).

we want find a simple method to compute J((x )

- o@) for all st RY.
N
)

) are know,

We define v~ = (Ai- pwi)vi. then
i=1
N N
g1 {n)
vp {my
N

J2_ (n) [ B Xa,d204,3Y6n)]
vp ij_l i j

]

N
p* [-2 =& AinJ2(i.J)(n)]
ij=1

$

[ Ekfnii)(nﬂ+p*{- by WiJl(i)(n)] (relationy),
i=1

+92*[..§ WiW,J2(1,5)(n)]  (relation 4)
ij=1
The expressions in brackets are independent of o, and
dependent only on (X, )i 1 and W Then they will computed
once only, to find 33 0 minimizing J((X - -eWy)
To compute J((X, —oW )
is,

i=1) p=,
-1)» We must compute a_(p), thas

¢_+2E.J9 (n)
G(np) = ISF vy T3 dn',
e 1+32°(n")
H ¢p+2£0J1°(n') dfl',

F(H) = s
P np 1+J2°(n")
and
i p exp(-Gp(n))
= fy ———t—— dn

1+32° (n)
exp[-F(n)]

O e M

TP 1432 (n)

Without going into the details, we use numericals integra-
tion so, we need the values of J1° and Jzﬂ, (according
to the relations 3 and 4) at differents fixed points of

a partitions of [O,nF] and [nF,H]. These values are
computed by the Centaure code, once for all, and are
independent of (). )1 =1 OTr ﬁ

We use the same method to compute ?ﬁo((ki)§=ﬂ )

3J((A ) ) 3.a 3.a
- A=LC. L s 2 j's T b :
W5 9“3 F* {-o, o +671+3(“5‘1)} with
_ 3%g N
3jug = axj((‘i)i=1)
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+"F exp[-G(n)
exp[G(ﬂF)]* 3J-G*{ 1% 7o 1+J2(n) o
pr[ F(H)+¢ *I __Bi:ziﬂll
P TE 1432(h)
eXD[G(nF)]*¢ #,OFa.k(n )dn
+
H exp[-F(n)]
exp[- F(H)]+¢ N e 9
"F exp[-G(n)
: exp[G(nF)]{1+¢ o _ijﬁTﬁT_l n
% H exp[-Fn)] 2
(exp] FfH)J+¢pan 140800y ")
: H
*{~ajF(H).eXD[-F(H)]+¢fan 9;M(n)dn} ,
np ) ”F 3,G(n)
where /. 3;K(n)dn = /" [-exp(G(n))* 1+J2(n)

exp[=-G(n)
T @Rzt 4J2(m)]dn

i
1+J2(n)

d_.J2(n)

%M(n) = -exp[-F(n)]* %F(n)*

- exp[-F(n)]* 5
(1+J2(n)) ‘

nF 2EOJ1(j)(n') 1 (—¢W+2E0Jl(ﬂ'))

9,.G(np)=/S
4 e e S (1+4J2(n'))2

* %JZ(n') dn'

)

2£0J1(J)(n') (¢Q+ZEOJ1(n'”

_ H —
3 F(H) = gT T+ 3200 (I+32(n yy &
* aJJZ(n')dn' ]

N
3,J2 (n)=2 % T A, J2(i5;3) (n")
J 1= *

A lot of expressions have been compute before, and we
use the some method to compute the others: we need

only the values of and J1(i) and J2(i)3) i=1,N j=1, N at
differents fixed points.

The Centaure code computes (ui, vi, @ ) for each element
vy of the base (v ) =1’ then it computes J1(1i) (xe) and
J2(1;3)(xe)i i,N j 1 N {xl,..., xL}a partition of[O,nF]U
[nF,H]; that is, we use N times, and only N, Centaure
code, and we spake an optimization directly with the code.

3.1 - Improvements of the gradient method.

1° Choice of the initial P.
We try three options:

a) We assume

then c=J -J((Al)i 1)

+ adJ L. -
- nwiu= 53(p=0)_(2ap+b)0=0-b

-»>
soO b = — wwn

N N
We assume also J(A ). _1) E<J(Al)i=1

—-o*ﬁ)ﬁ.ﬂ(l Ll
i=1
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Consequently — t£gap? —uwup§0 E
: thus the 3
v
A * b Wil
* = — — -1_
minimum p* verify o s
i l nwn @ Y erulz
80 =g 0 Mg

we assume Esigﬁ then a z 5ywi 2; the largest p

initial is Ogman ™ iﬁﬁ;ﬁfassociated with
a =51wi2) ,
; ol
b) Yet, the choice of £ = 100
Assume £=A J then p initia 24J

computation we have verified that p initial

2(Jn—Jn+ )

|;Wnl‘{
choice, with AJ = J
J b J(;\n+2|.

n+1
ferent because at each change of direction

1

J_ (as An+1

et~ , thus

the variation AJ defers.

wel

¢) So we must find a better evaluation of AJ.
AJ w2y : -
We assume 33; = = (linear hypothesis) .

m

is not the best.

1 = “—w”—!'. After a

is very good, but if we use this

) are unknow), the result is dif-

—
w

2, = DIAGRAM.

'J'{Li.)(IC) and J2(i))(%e) (s N

jo4M 3%, % | a partition of e ,H]

(Centaur Code)

-

initialisation of ();;)

N

Y

Compute E" » G (=)
z MyT2 (L))

(s AN _jod, N £ed,t

[ =73 al) |
)|

TEt\\

Y

x

w
Compute Z W, T340 M (xe)

- :
7 WLV I, W I264
75 W) 320 Yixe) ZX W J)!’d&("_

on

Dptimisation on the line (.\i):,-r-’? f>e
= f ond A= M- f'w’:' (=4,N

L

L -
Compute ﬁ N T () ,3:‘:.*‘%32“4’”‘)
€= 4, L

y
[ F-V7 () |
= ]

( A):r' optimal

e éi; P
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In particular, this choice is better during the . n“laiJ(An)A?"l—(x?“l—a?)aq

first iterations (half of iterations). For that, we A2l 5 8 —— 2 i=1, N
e S % N A sy sy ~
establish that the direction -w = -VJ((1,),_;) is 1 4 L
not very good. We try several algorithms to find a and after
faster method for our problem. -
: s = a0 FoaRt
L aPay s ™
3.2 - Elliptic approximation. & = + s
We conaider that the isovilues of J((Ai)§=lx around Then W = vJ()™) + Bn vJ(a ) verifies the relation
A= (Ai)§=leRN, are ellipses of which we search the wanLed.
Remarks: - The approximation is only around An,
n-1 n :
center AO: Xﬁo will be the descent direction. Segensingon A ARE Ry SOOCHEEEEE S SRON Shente
tion.

Precisely, we know An-l, J(An_l), 3J(An-1). K

- The convergence is fast, especially at the start,
J(ln), 3J(An) and we search for Bn such that

and the descent is very continuous.
Wt o= 330 «+ o, $30" 1) verifies -w" = al?ln’o,

where o>0 and AP0 is the center of the approximate I1I. Results and Discussion
ellipses.
Notation: pn-} = il 3% = J‘n—l” . We present an example of calculation for a centrif-

uge specified by the data
Height 250 cm
Radius 25 cm

9

Rotation speed parameter A2 = Mw2a2/2 RT;= 25 ,
-8

L]

Ekman number at the periphery e= wmwwaz=6.5 10

Feed (at midheight of the centrifuge) F = 0.1 g
UF;/8
Cut 8 = 0.5,
The data A2 = 25 and ¢ = 6.5 10~8 were calculated with
the following values of physical parameters:

We assume that the ellipses passing through An—l Gas pressure at the periphery P = 100 torrs,
and 1™ have the same ration of axe lenght, the some Mean gas temperature TO = 310 K ,

axes and the some center. Then we can compute the Peripheral epeed u a = 605 m/s .

center A&p&.RN: [ As first step of computations, we have partitionned the
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boundary é6q into 19 intervals (listed in TABLE 1) and we
have considered 19 base functions piecewise linear and
continuous. The next step is to compute the velocity
field corresponding to each component of the basis with
the help of CENTAURE code and to constitute a file of

19 velocity fields. The final step is to proceed to the
optimization calculation by the method of Sec II. However
one should keep in mind the fundamental assumption
underlying the model, i.e. the gas flow is assumed to

be a small perturbation around the rigid body rotation.
The linearization of the hydrodynamics equations is
valid only for small ROSBY numbers. In consequence, the
optimal temperature profile on the boundary that we are
looking for must verify everywhere on the boundary the
constraint

<<]
L]

‘ T -T0

To

we have computed three cases

(a) [(T - Ty)/T,| €54
(b) |(T - TO)/Tol £10% ,

(c) No constraint on [(T - TO)/TOI

The three corresponding optimal Controls, i.e the optimal
profiles of the temperature on the solid boundaries,
are plotted on Fig. 1. A certain number of comments are
to be made upon the results of these calculations:
1 - In all the three cases, the optimal drive is
predominantly the end caps drive and the lateral
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mode is practically inexisting.

- The optimal separative power depends strongly on
the value of the constraint in the range 0 to 10%
of ROSBY number; but it does not change much
beyond the value 10% for the ROSBY number. In the
case (c¢) (no constraint), the peak of the tempera-
ture profile is high (20%). The validity of the
linearization seems doubtful.

- The same centrifuge has been optimized in Ref[1]
by a simplified approach. The separative power
obtained in [1] was 38 SWU/year, i.e a little bit
lower than the value 41.3 SWU/year obtained by
the present general method. Nevertheless it should
be pointed out that the control obtained by the
simplified method is much easier to realize in
practice than the sophisticated temperature
profile of Fig. 1 yielded by the present work.

- The mass velocity field in the optimal situa-
tion is plotted in Fig. 2. Instead of two loops
of the standard picture of countercurrent flow,

the optimal flow is structured into four loops.

- The temperature profile in Fig. 1 is not ex-
actly antisymmetric. We have also proceeded to
the optimization calculation by imposing the
condition of antisymmetry as a constraint. The
temperature profile obtained in that case is plot-
ted in Fig. 3 and the corresponding optimal
separative power is 40.8 SWU/year, i.e slightly
lower than in case (c¢) of Fig. 1. Moreover, though
the profile of Fig. 3 is qualitatively similar to
that of Fig. 1, there is a very big difference in
the peak values of the temperature profiles: 28%
in Fig. 3 instead of 20% in Fig. 1.
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6 - In order to study the effect of the gas pressure
on the optimal performance of a centrifuge, we
have carried out computations with the same data
of centrifuge as above except for the gas pressure
at the periphery, for which we have considered
two more cases

Pw = 400 torrs and Pw = 20 torrs

For sake of simplicity, the computations are done
by assuming the antisymmetry. The optimal distributions
of temperatures on the solid boundaries for the three
cases are plotted in Fig. 4. The optimal separative
powers and the peak values of the temperature profiles
for the three cases are as follow:

AU optimal

P torrs | ¢(T-T )T comment
v SWU/year 0 Ol
20 34. 68.3%... validity of
100 , 40.8 27.6%...‘} linearization
400 40.1 7.5% doubtful.

For decreasing values of the pressure, the optimal
temperatures are increasing, which is quite normal be-
cause the separative performance depends upon the mass
flow rate of the countercurrent. Lower pressure results
in lower quantity of gas in the centrifuge and requires
then higher values of temperature to activate the
countercurrent. The dependency of the optimal separative
power upon the pressure is more striking. It seems that
the performance gets saturated, as it can be seen from
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Fig. 5, while the BROUWER'S estimation [10] gives an
increasing efficiency with increasing pressure. This
point needs further investigation.

CONCLUSION.

The method of optimization of a centrifuge develop-
ped in this paper is more general than what we have done
previously. Even though the optimal boundary conditions
obtained by the present method seem too sophisticated
to be realizable in practice, the computation is
nevertheless quite instructive for at leat two reasons:

1 - It yields an upper limit of the performance

that can be expected from a specified centrifuge
by the internal countercurrent mechanism.

2 - It provides a guideline to select practically
boundary conditions, i.e. as close as possible to
the optimal profiles derived by the present method.
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TENPERATURE  (T-To)[To, Ofp

Au,swu/year
(a) 35.2
(b) 41.
(c)y 413
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Fig. 1

COORDINATE ON THE BOUNDARRY.

Optimal temperature distribution on the solid boundaries of
a centrifuge satisfying the constraint l(T - TB)ITJ < s,
Three cascs are considered :

(@) § =51; ) §, =102 ;

(¢) no limitation on Sn
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0,01

0005

r/a , RADIAL DISTANCE.

Fig. 2 Axial mass velocity versus radial coordinate in the optimal

situation, at three cross sections

A:2/h=0.5; B:2z/h=075; C :2/h = 0.25
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0 ride. o Z/o

Fig. 3 Optimal temperature distribution on the solid boundaries, the profile
being constrained to be antisymmetric. On the same figure is also
plotted the solution without antisymmetric constraint.
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15| TEMPERATURE (T.To) /B, %
Pw= 20 fores.
( Rntisymme fric  constraint )
So
foo
25 1
400
0
0l “ /
400
bl
b FOF AP i s DIDE NI 0 . = ) //
0 et 0 zfa f 2

COORDINRTE oON THE BOUNDRRY.

Fig. & Influence of the gas pressure Fw at the periphery on the optimal
profile of temperature on boundaries.
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